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Abstract—Typical deep neural networks (DNNs) are complex
black-box models and their decision making process can be
difficult to comprehend even for experienced machine learning
practitioners. Therefore their use could be limited in mission-
critical scenarios despite state-of-the-art performance on many
challenging ML tasks.

Through this work, we empower users to interpret DNNs
with a post-hoc analysis protocol. We propose ProtoFac, an
explainable matrix factorization technique that decomposes the
latent representations at any selected layer in a pre-trained DNN
as a collection of weighted prototypes, which are a small number
of exemplars extracted from the original data (e.g. image patches,
shapelets). Using the factorized weights and prototypes we build a
surrogate model for interpretation by replacing the corresponding
layer in the neural network. We identify a number of desired
properties of ProtoFac including authenticity, interpretability,
simplicity and propose the optimization objective and training
procedure accordingly. The method is model-agnostic and can be
applied to DNNs with varying architectures. It goes beyond per-
sample feature-based explanation by providing prototypes as a
condensed set of evidences used by the model for decision making.

We applied ProtoFac to interpret pretrained DNNs for
a variety of ML tasks including time series classification
on electrocardiograms, and image classification. The result
shows that ProtoFac is able to extract meaningful prototypes to
explain the models’ decisions while truthfully reflects the models’
operation. We also evaluated human interpretability through
Amazon Mechanical Turk (MTurk), showing that ProtoFac is
able to produce interpretable and user-friendly explanations.

Index Terms—Matrix Factorization, Explainable AI, Deep
Neural Networks.

I. INTRODUCTION

Deep neural networks (DNNs) have shown promising

results in various machine learning (ML) tasks including

image, time-series and many others [1]–[4]. However,

given the complexity of their architecture and the high-

dimensional internal state, interpreting these models are

extremely challenging. Lack of explanation of such models in

many real world use cases, especially in high-stake mission

critical situations in medicine, finance, etc. makes them less

trustworthy or adaptable for use [5].

To address this challenge, a variety of methods have

been developed to obtain post-hoc explanations of pre-

trained black-box DNN models. With post-hoc explanation

techniques, we can get an improved understanding of a

model without incurring changes to it and therefore risking

lower prediction accuracy. Examples of such methods include

calculating feature attribution [6]–[9] or using interpretable

surrogates (e.g. linear regression) to locally approximate

a model’s decision boundary [10]. However, most of the

techniques only provide per-instance or local explanations and

it is difficult to gain an understanding of the model’s behaviour

as a whole. To obtain global explanations of DNNs, existing

methods interpret the representations captured by each neuron

at intermediate layers with activation maximization methods

[11] or extract concepts highly correlated with model outputs

[12], [13]. ML model developers can use these techniques

for validation and debugging purposes.

In this paper we introduce ProtoFac, an explainable matrix
Factorization technique that leverages Prototype learning to

extract user-friendly explanations from the activation matrix

at intermediate layers of DNNs. Our goal is to obtain a set of

prototypes with a set of corresponding weights for each input

to explain the behaviour of the model as a whole. Prototype

learning is a form of case-based reasoning, where the model

relies on previous examples similar to the present case to

perform prediction or classification [14]. It is a reasoning

process used frequently in our everyday life. For example,

a lawyer may cite an example from an old trial to explain

the proceedings of the current trial and a doctor may rely on

records of symptoms from past patients to perform diagnosis

for new patients. While a number of DNNs already utilize

prototype learning for builtin interpretability [15]–[18], our

goal is to leverage the idea for post-hoc, global explanation of

DNNs by using the factorized weights and prototype vectors

to build an interpretation surrogate/surrogate model to mimic

the original model’s behaviour: reconstruct the activation

matrix at the selected layer and feed it to the downstream

network to reproduce the predictions of the original model.

We outline a number of desired characteristics of the proposed

technique (i.e. the desiderata):

Authenticity. A reliable and trustworthy explanation of

a DNN should have high fidelity to the underlying model

by faithfully representing the operations of the network

[19]. To this end, the method should not only mimic the

underlying model’s output but also accurately reconstruct the

latent activation matrix in intermediate layers with weighted

combinations of prototype vectors.

Interpretability. To obtain interpretable matrix factorization

results, the technique should include non-negative constraints
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to ensure additive, not substractive combination of prototypes.

Besides that, each prototype should correspond to a realistic

example in the data to be human-understandable.

Simplicity. As the principle of Occam’s Razor states, the

simplest explanation should be adopted whenever possible.

Here it means that the explanation of a model‘s prediction

result should use the least possible number of prototypes.

Model-agnostic. Our goal is to develop a generic method

that is applicable to DNNs with varying architectures so that

it is flexible for models coming up in the future.

We formulate a novel learning objective for matrix

factorization considering the above criteria to obtain a set

of prototypes and their corresponding weights for model

interpretation. The training procedure uses gradient descent

and iteratively projects the prototypes to realistic data samples

or segments of data samples (e.g. image patches, n-grams

and shapelets in time-series).

We conduct experiments on a variety of pretrained DNNs

for a wide range of ML tasks including time-series classifi-

cation on electrocardiograms (ECG) and image classification,

demonstrating the general applicability of the proposed

method. For each experiment, we report the surrogate model’s

accuracy with respect to both the oracle prediction generated

by the original model and the ground truth labels. To evaluate

the transferability of the learned prototypes, we take a hold-

out dataset, freeze the prototypes learned previously, train the

weights only and report the results. We also report case studies

and visualize the prototypes identified by the algorithm. Proto-

Fac is further compared to non-negative matrix factorization

techniques [20], [21] using Frobenious loss as a quality metric.

Experiments show that our algorithm produces comparable and

sometimes superior factorization results. To evaluate human

intepretability of the results, we conduct a crowd-sourced

quantitative user study via Amazon Mechanical Turk (MTurk).

We ask the subjects to interpret the classification result of a

given instance by selecting from a set of candidate prototypes.

The result shows that ProtoFac is able to select prototypes that

align well with user’s intuition or common sense for model

interpretation. We also conduct various experiments to study

the effects of the hyperparameter settings (e.g. the number of

prototypes k) and the selection of different layers in a DNN.

Below we summarise the contributions:

• ProtoFac, an explainable matrix factorization technique

that leverages prototype learning to obtain post-hoc,

model-agnostic interpretations of trained DNNs.

• Experimental results on publicly available time-series,

and image data showing that our technique faithfully

reflects the behaviour of the original model and

successfully retrieves meaningful prototypes to explain

the models behaviour.

• Crowd-sourced quantitative user study with results show-

ing the effectiveness of our technique in extracting human

interpretable prototypes to explain complex DNNs.

II. RELATED WORK

We seek to help make complex ML models interpretable.

In order to do so, there are two main alternatives: (1)

use inherently interpretable models, or (2) use post-hoc

analysis methods to analyze trained DNN models to render

them interpretable [19]. Furthermore, past efforts in post-

hoc model interpretation can be categorised as local and

global explanation techniques. Local explanation techniques

show a model’s reasoning process in relation to each data

instance. Global explanation techniques aim to provide an

understanding of the model’s behaviour as whole and analyze

what knowledge has been acquired after training.

Intrinsically interpretable models. Models such as

decision trees, rule-based models [22], additive models

[23], sparse linear models [24] are considered inherently

interpretable. Unlike DNNs, these models provide internal

components that can be directly inspected and interpreted by

the user, e.g. probing various branches in a decision tree, or

visualizing feature weights in a linear model. Though these

approaches provide insightful explanations of ML systems’

reasoning process, inherently interpretable approaches usually

rely on simpler models which may compromise prediction

performance in comparison to state-of-the-art DNNs. Recently,

a number of DNN architectures also incorporate interpretable

components such as attention modules [25] or prototype

layers [15]–[18] for intrinsic interpretability. However, such

models may need to perform trade-off between interpretability

and model performance in terms of prediction accuracy.

Post-hoc local explanation. Local explanation methods

show a pre-trained model’s reasoning process in relation

to each data instance. One of the most popular post-hoc

approaches to explain models is calculating and visualizing

feature attributions [6]–[9], [26]–[30]. Feature attributions can

be computed by slightly perturbing the input features for each

instance to verify how the DNN model’s prediction response

varies accordingly [7], [31]. It can also be computed by back-

propagating through the neural network [6]. Another popular

local explanation approach samples the feature space in the

neighborhood of an instance to compose an additional training

set. The training set is used to build an interpretable local

surrogate model that mimics the behaviour of the original

model. Using this approach an original model’s prediction can

be explained by an interpretable model (e.g. linear regression)

that is easier to inspect [10]. However, local explanation

approaches are shown to be inconsistent as the explanation is

true for only a specific data instance or its neighbors but not

for all the items in the data. Furthermore, it could produce

contrasting explanations for two data items from the same

class label. It could also suffer from adversarial perturbations

[32], [33] and confirmation biases [34]. Besides that, post-hoc

local explanation methods require users to manually inspect

each data sample to review the model’s behaviour instead of

showing the model’s behaviour as a whole.

Post-hoc global explanation. Global explanation

techniques aim at providing an overview of the model’s
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behaviour instead of focusing on individual instances or

local input regions [19]. For DNNs, a particular set of global

model explanation techniques focus on understanding the

latent representations learned by the neural network through

activation maximization techniques [11] which calculate

inputs that can maximally activate each individual neurons

in intermediate layers in a neural network. On the other

hand, concept-based explanations show how the model makes

predictions globally by showing relevant concepts [12], [13],

[35], [36] that are understandable to humans. For example, the

technique interpretable basis decomposition (IBD) explains

image classification model by showing relevant concepts that

are human-interpretable [13]. In particular, concept activation

vectors (CAV) are discussed by Kim et al. [12] as a framework

to interpret latent representations in DNNs. This technique has

been shown to be implemented by using supervised approaches

where data with human-annotated concepts is available [12],

or by unsupervised techniques (i.e. clustering) to retrieve

relevant concepts directly from the training data [35].

III. METHODOLOGY

Our approach simplifies and visualises the otherwise

complex representation of a latent space of any layer of a

DNN. We factorize a desired layers’ activation matrix to

find k prototypes and their respective weights for each input

instance. Using this post-hoc analysis protocol we probe an

existing model and explain its reasoning process. We design

our approach to be model and data agnostic by being able

to work with a variety of DNN architectures for image,

time-series, and text data analysis.

More specifically, as illustrated in Figure 1, we design

ProtoFac to build a surrogate model to explain the original

DNN’s activation matrix at any user-specified layer l, which

we denote as Al. Assuming the latent representation at layer

l is a fixed length vector with m dimensions and the total

number of input instances is n, Al will be a n × m matrix

where each row al
i ∈ R

m represents the latent activation

of input instance xi at layer l. ProtoFac decomposes Al

to obtain Al
n×m ≈ Wn×k · Hk×m, where k is the number

of prototypes, a hyperparameter that needs to be specified.

Each row hj ∈ R
m in Hk×m is a prototype vector and

each row wi ∈ R
k in Wn×k is a weight vector to combine

the k prototypes and recover the original activation vector

al
i of xi. For the prototype vectors hj (0 ≤ j < k) to

be interpretable, in ProtoFac we constrain them to be the

latent representations of realistic data samples or segments

of data samples at layer l, e.g., image patches, shapelets

(i.e. segments in time-series) or n-grams in text data.

In Figure 1, f l−(·) represents the downstream part in

the original network after layer l and f l(·) represents the

upstream part that takes any input xi and output the latent

representation al
i = f l(xi) at layer l. Using the original latent

representation at layer l, the prediction for xi is ŷi, which we

refer to as the oracle prediction. The surrogate model uses the

recovered activation W ×H as input to the downstream layers

Fig. 1. ProtoFac uses a surrogate model that replaces the activation matrix
Al at any selected layer l in a neural network with weighted combinations
of prototypes (i.e. W × H). To authentically reflect the model operation
the goal is to reconstruct the activation matrix with minimum uninterpreted
residuals (i.e. ‖Al−W×H‖F ) and mimic the original models’ prediction
as much as possible. For better interpretability, we constrain the prototype
vectors hj in H to be the latent representations of realistic data samples or
segments of data samples at layer l.

after l to obtain a new set of predictions for {xi} which should

highly resemble the original model’s oracle predictions.

A. Optimization Objective

We formulate the optimization objective based on the

desiderata listed in section I for post-hoc explanation of DNNs.

Authenticity. ProtoFac replaces the original model’s activation

matrix with the recovered activation matrix obtained through

the weighted combination of prototype vectors and feeds it

to the downstream network. We anticipate using this step it

should produce similar prediction compared to the original

network. To faithfully reflect the original model’s behaviour,

we define the following two loss terms:

- Frobenius norm of the factorization residual:

Lr(W,H)|X,f,l =
1

n
||R||F =

1

n
||Al −W ×H||F (1)

where X = {xi}, 0 ≤ i < n represents all the input instances,

f is the trained oracle model and l is the selected factorization

layer. The goal is to minimize uninterpreted residuals if we

replace the original activation matrix with the weighted

combination of prototypes at layer l.

- Cross entropy loss comparing oracle model’s and

the interpretation surrogate’s predictions, using binary

classification as an example:

Lce(W,H) = − 1

n

∑

0≤i<n

ŷi log(p
′(ŷi))+(1−ŷi) log(1−p′(ŷi))

(2)

where ŷi is the oracle prediction on the input instance xi,

and p′(ŷi) is the surrogate model’s predicted probability on
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the oracle label, obtained by feeding reconstructed activation

down through f l−(·).
Non-negativity. We desire to find matrix W with only

non-negative entries to allow only additive combinations

of prototypes. We also constrain that each row in W to be

summed to 1.0 such that the weights of the prototypes can

be directly compared among different input instances.

Sparsity and concentration. To ensure that users are not

overwhelmed by the shown prototypes, we seek to find less

but good prototypes that can reconstruct the activation matrix

precisely. To encourage that the distribution of the weight to

be concentrated at only a few prototypes for each input, we

add a concentration loss term:

Lc(W ) =
1

n

∑

0≤i<n

min
0≤j<k

‖wi − ej‖2 (3)

where ejs are standard basis vectors with length k. Only the

jth entry in ej is equal to 1.0 and all the others are equal to

zero. The loss function encourages the weights to concentrate

on any one prototype. Notice that this is a soft-constraint and

does not enforce a strict clustering boundary as k-means does.

Full objective. We combine the above discussed loss terms

and constraints together to form the following optimization

objective:

Loss(W,H)|X,f,l =λceLce(W,H)|X,f,l + λrLr(W,H)|X,f,l

+λcLc(W )
(4)

where W ∈ R
n×k, H ∈ R

k×m, W ≥ 0, H ≥ 0 and∑
0≤j<k wi,j = 1.0.

B. The ProtoFac Algorithm

With the additional loss terms in the optimization objective

matrix factorization techniques e.g. alternating least squares

(ALS) is no longer sufficient. The optimization objective is

not convex with respect to W or H due to the addition of the

authenticity term involving the downstream layers f l−(·) in

the deep neural network. Therefore we propose an algorithm

using stochastic gradient descent (SGD) with mini-batch to

obtain the prototypes and their respective weights.

The ProtoFac algorithm is shown in detail in Algorithm 1.

It first collects the activation matrix Al and the oracle

predictions Y = {ŷi}(0 ≤ i < n) by feeding the training

data X = {xi} into the original DNN ( line 1-2 ).

The activation matrix is constructed by flattening the latent

activation of each input at layer l and concatenate them to

form an n×m matrix. After that, a set of candidate prototypes

are generated by first randomly sampling a subset of X and

then applying g(·) to each sample xi ∈ sampler(X) to

generate a set of candidate prototypes. g(·) varies for different

types of data but generally it can be implemented by applying

a sliding window over e.g. image or time-series data to obtain

a set of image patches or shapelets respectively. We collect all

the candidate prototypes P = ∪xi∈sampler(X)g(xi) as well

as their latent representations at layer l, which are collectively

denoted as Al
P line 3-4 . For DNNs that accept varying

lengths inputs, the candidate prototypes are directly fed into

the network to obtain the latent representation. For DNNs

with fixed size inputs we simply mask the data outside the

region covered by the moving window.

Input: pretrained model f , selected layer l, training

data X = {xi}, candidate prototype generator

g(xi)
Parameters: number of prototypes k, hyperparameters

(λs)

Output: prototype vector H , weight matrix W
/* Obtain activation matrix and

oracle labels */
1 Al = [ai], ai = f l(xi), xi ∈ X;

2 Ŷ = {ŷi = f(xi)}, xi ∈ X;

/* Obtain candidate prototypes and
their latent activations */

3 P = ∪xi∈sampler(X)g(xi);
4 Al

P = [ap], ap = f l(p), p ∈ P ;

/* Freeze up and downstream network
in oracle model */

5 freeze parameter(θ) for θ in f l(·) and f l−(·);
6 for epoch ∈ [1, n epochs] do
7 for batch ∈ batch generator(Al.rows) do
8 batch loss = loss(W [batch.rows], H) ;

9 update W [batch.rows] and H with gradient

descent;

10 end
11 if mod(epoch, projection interval) = 0 then

/* project to candidate
prototypes */

12 H = [hj ] where hj = f l(pj),
pj = argminp∈P ‖hj − f l(p)‖2;

/* freeze H and update W */
13 for epoch’ ∈ [1, n epochs′] do
14 for batch ∈ batch generator(Al.rows) do
15 batch loss = loss(W [batch.rows], H);
16 update W [batch.rows] with gradient

descent;

17 end
18 end
19 end

Algorithm 1: The ProtoFac algorithm.

Before the training starts we freeze the parameters in both

the upstream and downstream layers ( line 5 ) since we

want to keep the oracle model intact. During training, W and

H are initialized with random weights and updated through

SGD (Adam [37] optimizer is used in the experiments pre-

sented in this paper). We combine rows in Al to form training

batches ( line 7 ) to handle large scale data. When iterating

through each batch the corresponding rows in W and the entire

H will be updated through gradient descent ( line 8-9 ).

For every few epochs and also after the last epoch we perform

prototype projection ( line 11-18 ) which first assigns the
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prototype vectors hj obtained through gradient descent to their

nearest neighbors in P in euclidean distance ( line 12 ).

The respective image patches, shapelets and n-grams are

stored accordingly to generate user-friendly explanations along

with the weights. After projection the algorithm freezes the

prototype vectors and updates the weights again through

SGD ( line 13-18 ) to obtain an optimal factorization. The

training process stops when the accuracy of the surrogate

model with respect to the oracle prediction no longer improves.

With ProtoFac described in Algorithm 1 we can obtain

a set of prototypes and their corresponding weights for a

training set. To evaluate the applicability of the identified

prototypes to unseen data we can use a similar algorithm

except that now the prototype matrix H need to be freezed

and the algorithm no longer performs prototype projection.

A new W matrix is obtained for the unseen data however the

same prototypes are used as for the training set.

IV. EXPERIMENTAL EVALUATION

In this section we report experimental results on a variety

of DNNs for different ML tasks. All the experiments are

conducted on publicly available datasets including image,

time-series, and text data. We also conduct various ablation

studies to examine how different hyperparameter settings, and

the selection of different factorization layers in a model affects

the surrogate model’s accuracy. We also conduct user study to

evaluate human interpretability of the factorized prototypes.

We implement the DNN models and ProtoFac using Py-

Torch1. We utilize trained oracle models and save their internal

parameters. The latent activations at the selected layer are

collected through implementing a hook function in PyTorch

and running the training samples through the network. In the

same way we collect the latent activations of the prototype

candidates. When training the surrogate model all the down-

stream layer parameters in the oracle model are freezed.

A. Case Study: Interpret Image Classifiers: VGG and ResNet

We apply ProtoFac to analyze two models for image

classification: VGG19 (+batchnorm) [38] and ResNet50 [39].

Both models are trained on the CIFAR-10 dataset [40], which

contains 60000 colored images evenly distributed in 10

classes. Each image has a resolution of 32×32. The models
2 have more than 94% validation accuracy.

We select two layers each from VGG19 and ResNet50 for

the experiment (Table I). The feature map of the selected layer

is flattened to collect the activation matrix. In the surrogate

model, after obtaining the reconstructed activation we also

reshape it accordingly in order to send it to the downstream

network. For more details about the original models’

architectures and the layers selected for extracting prototypes

please refer to Appendix VI-B. The prototype candidates are

image patches generated from the training samples with a

moving window of size 16×16 and a stride of 4. Therefore

1https://pytorch.org/
2We use the pretrained models from

https://github.com/huyvnphan/PyTorch-CIFAR10

for each image 5×5 image patches are created. We also

experimented with image patches of size 4× 4, 8×8, 16×16

respectively and found 16×16 gives the best results in terms

of the authenticity with respect to the original model. To limit

the number of patches, we uniformly sampled 20% images

for each class. For all the experiments with different layer and

model combinations, we train the surrogate model using batch

size of 64 and a learning rate of 0.005. In total for each exper-

iment we run 40 training epochs with a projection frequency

of 5 and report the best result (in terms of accuracy wrp. the

oracle model) obtained in the training process. More detailed

hyperparameter settings can be found in Appendix VI-A.

Table I summarizes the experimental results. The result

shows that the surrogate model can achieve high fidelity to

the original model - the accuracy of the surrogate models

with respect to the oracle models’ predictions (Acc. (vs.

oracle) in Table I) remains high around 99% with appropriate

setting of prototype number k. Correspondingly, the surrogate

models also has similar accuracy as the oracle model with

respect to ground truth labels (Acc. (vs. groundtruth) in

Table I). The Frobenius losses (F-loss (ProtoFac) in Table I)

remain reasonably close and sometimes is even lower

compared to the one obtained through a classic non-negative

matrix factorization algorithm [20], [21] (F-loss (NMF)) 3.

Comparing the layer maxpool3 and maxpool5 results for

VGG19 with equal k, we also observe that by factorizing the

layer closer to the output the algorithm can achieve higher

fidelity to the oracle model, which is not too surprising. In

Figure 5 we conducted more extensive experiment to analyze

how the selection of different k and layers in the original

model would affect the performance of the surrogate model.

Fig. 2. Example image patches and the highest weighted prototypes. The
first row shows the prototypes associated with a car image: one prototype
contains the wheel and another contains the red light which could be
associated with the tail lamp. On the second row the horse is recognized by
its body shape as the highest weighted prototypes all describe body shapes.

Figure 2 shows example prototypes along with their weights

from the factorization results to explain the original model’s

prediction. The result shown in the figure is obtained by

factorizing the maxpool3 (Figure 9) layer in VGG19. It clearly

shows that some predictions are performed by using a parts-

3We use the implementation at http://nimfa.biolab.si/ and set the rank to k.
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TABLE I
EXPERIMENTAL RESULTS ON VGG AND RESNET FOR IMAGE CLASSIFICATION TASKS.

Dataset Model Acc.(valid) Factorized Layer k Acc.(vs. oracle) Acc.(vs. groundtruth) F-loss(ProtoFac) F-loss(NMF)
CIFAR-10 VGG19 94.25 maxpool3 60 96.10% 90.65% 0.0006 0.0009

maxpool3 120 98.45% 92.80% 0.0006 0.0009
maxpool5 60 100.00% 93.60% 0.0014 0.0243

ResNet50 94.38 bottleneck14 60 98.35% 94.15% 0.0006 0.0056
bottleneck14 120 99.15% 94.30% 0.0007 0.0056
bottleneck16 60 99.65% 94.35% 0.0007 0.0197

TABLE II
EXPERIMENTAL RESULTS ON RESNET-1D FOR TIME-SERIES CLASSIFICATION TASK ON THE MIT-BIH DATA.

Dataset Model Acc.(valid) Factorized Layer k Acc.(vs. oracle) Acc.(vs. groundtruth) F-loss(ProtoFac) F-loss(NMF)
MIT-BIH ResNet-1D 98.23 block1 60 95.10% 81.21% 1.812 1.9113

block2 50 97.63% 95.94% 1.072 1.123
block3 50 98.21% 97.27% 0.873 0.943

fc 50 100.00% 98.34% 0.0402 0.0654

based representation: on the first row the image is classified

as a car since it is related to prototypes containing the wheel

and the red taillight and the car back individually. Figure 3

shows some example prototypes from different classes and the

image samples with the highest weights on those prototypes.

Fig. 3. Example prototypes (highlighted in their source images) and images
with heavy weights on those prototypes. On the second row both birds and
airplanes are matched to the same prototype for their similar wing shapes.

B. Case Study: Interpret Time Series Classifiers for ECG Data

Electrocardiogram (ECG) records are widely utilised by

medical practitioners to monitor patients’ cardiovascular health

and perform diagnosis. Since manual analysis of ECG signals

is both time-consuming and error-prone, recently a number

of studies explore using machine learning to automatically

perform anomaly detection or classification on ECG signals.

Among the ML models DNNs is one of the most widely used.

We test our technique on a DNN model to classify ECG sig-

nals, using the MIT-BIH Arrhythmia ECG Databases [41], [42]

with labeled records. The dataset contains ECG recordings

from 47 subjects each recorded at a sampling rate of 360Hz.

We use preprocessed data from [43] where each segment

corresponds to a heatbeat. In accordance with Association for

the Advancement of Medical Instrumentation (AAMI) EC57

standard [44], each of the segments are annotated with one

of the 5 labels: Normal (N), Supraventricular Ectopic Beat

TABLE III
EXPERIMENTAL RESULTS ON CNN-1D MODEL FOR ECG TIME-SERIES

CLASSIFICATION.

Dataset Model Acc. (valid) Factor. Layer k Acc. (v. oracle)
MIT-BIH CNN 98.11 % fc1 50 99.76 %

fc2 50 100.00 %

cont. Acc. (v. groundtruth) F-loss (ProtoFac) F-loss (NMF)
97.76 % 0.0132 0.0231
98.09 % 0.0651 0.0320

(SVEB), Ventricular Ectopic Beat (VEB), Fusion Beat (F),

and Unknown Beat (Q). Furthermore the data is divided into

training and validation set with 87k samples and 21k samples,

respectively. Since the ECG data is a uni-variate time series,

we utilised a 1D CNN model. (architecture diagram in

Appendix VI-B). We train the CNN-1D model with convolu-

tional kernels of size 4, 8, 16, 32, 64 and 128 channels each,

a max pooling (over time) layer, and 2 fully connected layers

following that. The model is trained with batch size of 4096.

With 120 epochs we obtain an original model with 99.37%
and 98.11% training and validation accuracy (Table III).

Fig. 4. Recovered prototypes for ECG data. Each class is represented with
a separate color. The solid line is the prototype while the transparent lines
are inputs with the highest weight on the corresponding prototypes.

For the experiments on ECG data, we use complete

heatbeat sequences as candidate prototypes and do not apply

moving window on top of it to extract time series segments
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as prototypes. The reason is that the original sequences only

contain individual heatbeats and further dividing them could

hurt interpretability. We train the surrogate model using

k = 50 with 120 epochs and a projection frequency of 30.

(for detailed training hyperparameter settings please refer to

Appendix VI-A). We factorize the output from the two layers

just before fc1 and fc2 and find that our surrogate model is

able to obtain high fidelity with respect to the original model

(Table III Acc. (vs. oracle)) at both layers. The activation

matrix is also reconstructed with reasonable Frobenious losses

(Table III F-loss (ProtoFac)) when compared to traditional

NMF technique (Table III F-loss (NMF)).

Our analysis using visualizations (Figure 4) show that these

prototypes are good representatives of the ECG data samples.

We also categorize the prototypes by class labels to analyze if

the prototypes capture some distinctive features of that class.

We find that the prototypes that correspond to class label

SVEB and class label VEB have more irregular rhythms com-

pared to the Normal Beats (N) with varying positions of peaks.

Prototypes associated the class label Unknown Beat (Q) on the

other hand shows a lot of diversity and variation (Figure 4).

C. Experiments to verify our matrix factorization approach:

To validate our technique on the MIT-BIH ECG timeseries

dataset we also deployed ProtoFac on a ResNet-1D model as

introduced in [45]. The architecture for this model included

3 ‘blocks’ with kernel sizes [7, 5, 3], and channel sizes of

each as [64, 128, 128]. Each ‘block’ is composed of 3 1D-

convolution layers (each followed by a batch normalization

function). Before making prediction, we connect the output

from all the ‘block’ layers to a fully connected layer. To guard

for overfitting, we use a dropout rate of 0.2. The model is

trained with batch size of 512, learning rate of 0.007, and 80
epochs to get the best ground truth accuracy of 98.34% on the

validation set. In ResNet-1D we tested ProtoFac’s effectiveness

by factorizing the layers ‘block1’, ‘block2’, ‘block3’, and

’fully connected‘, one at a time (refer Table II). While we

factorized these layers’ we froze the parameters in the up

and downstream layers of this model in order to preserve the

oracle model. As we train the surrogate model, we initialize W

and H with random weights and then train the weights using

SGD (with Adam as the optimization algorithm). W and H

matrices are updated per iteration in the gradient descent’s

training process; after finishing an epoch, ProtoFacretrieves

‘k’ prototypes. We conducted the following experiments on

this network to further verify the effectiveness of ProtoFac.

Comparing with other matrix factorization methods: We

compared the accuracy metric of our surrogate model when

the activation matrix was factorized using ProtoFac vs. when

factorized with traditional non-negative matrix factorization

techniques. We used the NIMFA python library’s [46] NMF

method and assigned the ‘explained variance‘ as the objective

function and ‘euclidean’ as the update metric as input

parameters. We found that using ProtoFac the ground truth

accuracy of the surrogate model was 98.34% on the ECG

Dataset, while using NMF method from NIMFA, the accuracy

was 96.65% (factorization layer was ‘fully connected’ layer).

The ground truth accuracy results were 95.94% and 95.02%
for ProtoFac and NIMFA respectively when the layer ‘block2’

was factorized. The Frobenious loss compare to traditional

NMF method as shown in Table II shows that our method also

consistently performs better to recover the original activation

matrix. This proves that our matrix factorization approach

performed comparably well with other factorization methods.

However, in ProtoFac while we factorized the activation ma-

trix we also recovered prototypes explaining the original model

with semantically meaningful image patches or shapelets.

Activation Matrix reconstruction: Next, we sought to verify

the effectiveness of ProtoFac to accurately reconstruct the

original activation matrix even if there are any missing values

in it. To test this, we programmatically replaced 20% of the

original values from the activation matrix with null values

(represented by 0). Then using ProtoFac we factorized this

activation matrix (with part null values). Our results show that

when the ‘fully connected’ layer was factorized the ground

truth accuracy dropped by only 3.42%, thus proving that our

approach of matrix factorization very closely reconstructs the

original matrix even if there are missing values in it.

D. Ablation Studies

Effect of the number of prototypes k: We are curious to

study how the number of prototypes k impacts the accuracy

of the surrogate model. We begin the experiment with a low

value of k = 3 and then gradually increase it to study how

the surrogate model’s accuracy change with respect to both

the oracle model’s prediction and the ground truth labels. The

experiments are conducted on both CNN-1D for ECG data

analysis and VGG19 for image classification. Two layers are

selected from each model for the experiment, same as the

ones in Table I and Table III. All the experimental results are

obtained on a held-out validation dataset.

Figure 5 summarizes the results. For both models we

observe that as we increase k the accuracy of the surrogate

model gradually increased and then flattened out for larger

k’s. The accuracy with respect to the oracle model predictions

saturates near 100% and the accuracy with respect to the

ground truth labels saturates at the oracle model’s validation

accuracy. The result shows that with sufficient number of

prototypes the surrogate model is able to accurately approxi-

mate the original model’s output and adding more prototypes

after the model saturates has diminishing marginal utility. The

curve can also be used to select an appropriate number of

prototypes. One approach that worked very well for us, was

to start with a low value of k and then increase it until we do

not observe any significant change in the model’s accuracy. In

addition, one should consider that having a surrogate model

with a high number of prototypes may render the model less

interpretable by adding undesirable prototypes as noise.

Effect of the selected layer for prototype factorization:
Figure 5 also shows how the behaviour of the surrogate

model changes as different layers from DNNs are selected for

prototype factorization. For both CNN-1D and VGG19, we
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observe that as the selected layer move closer to output (fc2

in CNN-1D and maxpool5 in VGG19), the surrogate model’s

performance saturates much faster as k is increased. The

reason is that the latter layers generate latent representations

that can be more easily separated for prediction.

Fig. 5. Plot of surrogate model’s accuracy (v. ground truth and oracle) in
relation to the number of prototypes k. A. accuracy vs. k for the CNN-1D
for ECG classification. Note the data is from the two fully connected layers in
the CNN model. fc2 is the penultimate layer. B. accuracy vs. k for CIFAR-10
on VGG19 maxpool3 and maxpool5 layers (Figure 9).

E. Crowd-sourced evaluation of Interpretability

Interpretation of a model by non-experts are often driven

by subjective aspects. Thus to evaluate effectiveness of

our method in helping users interpret models with the

aid of prototypes, we conduct a quantitative evaluation of

ProtoFac with human subjects. Through this experiment we

seek to answer how interpretable and understandable are the

prototypes in explaining the prediction of a trained DNN

model. For the evaluation, we use the VGG19 model trained

on CIFAR-10 image classification data (10 class labels)

with 60 prototypes extracted from maxpool3. To collect

user feedback on the model interpretation we recruit human

participants on Amazon Mechanical Turk (MTurk) who are

non-experts in machine learning. We ask users to fill a survey

questionnaire with 20 questions each for image and text data.

Experiment Settings and Results (VGG): We generated a

set of 20 questions where each question contains an image

(we sampled two images from each class in CIFAR-10) with

a class label and a set of six candidate prototypes as potential

explanations to the prediction of the image (see Figure 6).

Users were asked the following question: “Which of the fol-

lowing options do you think can be used to explain the image

(on the left) and its caption (label)?” If none of the shown

prototypes explain the image and its label, then users can

choose the last option “None of them”. Out of the 6 candidate

prototypes 2 were prototypes selected by the ProtoFac to

explain the prediction, 2 were other prototypes, and 2 were

randomly chosen image patches . Through MTurk we collected

58 responses and removed 6 of them for missing entries.

From the remaining 52 responses we analysed the data to find

that on average the users’ selections align with the algorithm

selections for 16.314 (SD = 2.37) out of the 20 input images

(we consider they are aligned if the user chooses any of the two

prototypes). From this result we can conclude that most of the

prototypes generated by our surrogate model are human un-

derstandable explanations of the predictions. Figure 7 analyze

the distribution of the average alignment score (percentage of

aligned responses) for different classes and the distribution of

the average alignment score for different experiment subjects.

Fig. 6. Example question used in our user study with the image data.

Fig. 7. Box-plots show A. the distributions of the average alignment score
(percentage of aligned responses) for different classes and B. for different
users. The result is for VGG model on CIFAR-10.

V. CONCLUSION AND FUTURE WORK

We present a post-hoc, model-agnostic interpretation

method for general DNNs. The proposed matrix factorization

algorithm named ProtoFac decomposes the latent activation in

any selected layer in a DNN into a set of prototypes with corre-

sponding weights. We formulate a novel optimization objective

for ProtoFac considering the various desiderata to obtain

post-hoc interpretations of ML models including authenticity,

interpretability, and simplicity and propose the corresponding

optimization procedure. Through experiments on a variety

of DNN architectures for different ML tasks such as time

series classification on ECG data and image classification, we

demonstrate that our algorithm is able to find a set of meaning-

ful prototypes to explain the model’s behaviour globally while

remaining truthful to reflect the underlying model’s operations.

We also conducted a large scale user study on Amazon

Mechanical Turk to evaluate the human interpretability of

the extracted prototypes. The results demonstrate that the

algorithm is able to extract prototypes that can be easily under-

stood and align well with human intuition and common sense.

While the first step is promising, continued effort and further

research is needed to scale the solution for larger datasets,

more complex models, and for a diverse set of ML tasks.
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W. Samek, and O. D. Suárez, “On pixel-wise explanations for non-
linear classifier decisions by layer-wise relevance propagation,” in PloS
one, 2015.

[29] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning impor-
tant features through propagating activation differences,” ArXiv, vol.
abs/1704.02685, 2017.
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VI. EXPERIMENT DETAILS

A. Hyperparameter Settings

In Table I, we set λce = 1.5, λr = 50.0, and λc = 10.0.

Other training configs are: n epochs = 50, batch size =
64, projection interval = 10, learning rate = 0.005,

n epochs′ = 20, and learning rate weight updates =
0.005.

In Table III, for the experiment on the CNN model

for electrocadiodiagram (ECG) classification, we set λce =
30.0, λr = 15.0 and λc = 1.0 . Other training con-

figs are: k = 50, n epochs = 120, batch size =
4096, projection interval = 30, learning rate = 0.09,

n epochs′ = 20, and learning
rate weight updates = 0.005.

In Figure 5, for the experiment on VGG19, we set λce =
1.5, λr = 50.0 and λc = 10.0. Other training configs are:

n epochs = 39, batch size = 64, projection interval =
5, learning rate = 0.005, n epochs′ = 20, and

learning rate weight updates = 0.005.

B. Model Architectures

Fig. 8. CNN-1D model architecture for ECG data.

Fig. 9. VGG19 model architecture for CIFAR-10.

Fig. 10. ResNet50 model architecture for CIFAR-10.
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