
1

LEGION: Visually compare modeling techniques
for regression
Subhajit Das and Alex Endert

Abstract—People construct machine learning (ML) models for various use cases in varied domains such as in healthcare, finance,
public-policy, etc. In doing so they aim to improve a models’ performance by adopting various strategies, such as changing input data
(data augmentation), tuning model hyperparameters, performing feature engineering that includes feature extraction, feature
augmentation or feature transformation. However, how would users know which of these model construction strategies to adopt for their
problem? Following any or all of these approaches allows the construction of a gigantic set of models, from which users may select
model(s) suited to their data analytic task. This problem of model selection is non-trivial because in real-world use cases many of the best
performing models (in relation to a specified metric) may appear to serve users’ goal but often exhibits nuances and tradeoffs (e.g, may
weight features differently, varying compute times to train, or may predict relevant data instances differently etc.). This paper aims to solve
the problem of how to construct models and how to select a preferred modeling strategy by allowing users to compare the differences and
similarities between multiple regression models, and then learn not only about the model but also about their data. This learning further
empowers them to select model(s) that more precisely suit their analysis goals. We present LEGION, a visual analytic tool that helps
users to compare and select regression models constructed either by tuning their hyperparameters or by feature engineering. We also
present two use cases on real world datasets validating the utility and effectiveness of our tool.

Index Terms—Visual comparison, Visual Analytics, Regression Task, Model selection, Multi-model system, Feature engineering.

F

1 INTRODUCTION

Machine learning (ML) has changed how people solve problems
in various domains. For example healthcare practitioners use ML
to predict disease diagnostics [1], [2], financial analysts model
and forecast future housing prices [3], etc. In such scenarios,
people construct models that are expected to not only be highly
accurate, but also should satisfy other relevant user-specified
criteria. These may include models that are easier to explain
or reason, models that can better characterize missing values in
the training data, models that are faster to train and deploy in a
production setting etc. To achieve these goals users can construct
better models by augmenting data, tuning hyperparameters, or
adopting feature engineering techniques. As such users should
question: (1) What modeling strategies (e.g., hyperparameter tuning
or feature engineering) should be used to construct models?, and
(2) How should models be selected from a set of candidate models?
To resolve the model construction problem we present a visual
technique that aids in comparison of models that are constructed
using feature engineering versus models that are constructed using
hyperparameter tuning. We are motivated not only to help users
select models but more importantly to help users decide on an
appropriate model construction strategy for their domain-specific
problem, an important distinction from previous systems.

The second question that this paper addresses pertains to model
selection in visual analytics (VA), which often is a multi-objective
optimization problem, where users may have a varying set of
domain-specific goals that depends on the dataset and the problem
at hand e.g., accuracy per class label on an imbalanced data [4]. In
an interactive model selection process (e.g., RegressionExplorer [5],
Xclusim [6], etc.) when users are presented with multiple models

• , Subhajit Das, and Alex Endert are with Georgia Institute of Technology.
E-mail: das, endert@gatech.edu

that solve the same task, some candidate models may serve a subset
of their goals, but these may also have critical tradeoffs that needs to
be presented to users as they select their preferred model. Recently,
VA researchers have looked at visual interfaces that provide access
to multiple machine learning models. For example, ClusterVision
allows interactive construction of multiple clustering models [7],
Boxer shows an approach to compare discrete-choice classifiers
in relation to subset data items using multiple coordinated views
[8]. Similarly, Hypermoval [9] and BEAMES [10] are systems
that allow interactive modeling of multiple regression models.
While these tools are effective and useful to help users find or
compare preferred models, they fail to help users decide on what
modeling strategy is suitable for their problem. Most of these
systems, are implemented using one of the modeling strategies
(i.e., either hyperparameter tuning, or feature engineering, etc.).
For example, the tool Squares [11], shows model performance
visualization for multi-class classifiers, but fails to clarify the
distinction or commonality between models in relation to how
they were constructed. Another tool Gamut allows construction
and interpretation of a very specific ML model (GAM models for
regression), but is not designed to answer what modeling strategy
would solve the users’ problem [12].

We seek to express incoherencies and similarities between
models in relation to various modeling strategies. Different models
show subtle nuances in relation to data instances and features
present in the data, that exposes the tradeoffs between them, and
further helps users to learn more about the model and their data. To
that end, MLCube is a VA system [13] that is the closest solution to
this problem (that we know of). MLCube compares multiple models
in relation to aggregation statistics and evaluation metrics over data
instance subsets. However, MLCube does not compare models in
relation to the underlying modeling technique. Furthermore, past
VA systems (e.g., BEAMES [10], FeatureExplorer [14]) expect



2

users to specify feature weights or select features when they
construct models. This is effective when the user is either a domain
expert or the data has such features that are more relevant than
others. However, what if the user is not certain about which features
to select, or if the data contains noise and does not reflect the users
expectation. In such cases, we need systems that show various
modeling possibilities by using various combination of features.

In this paper, we present LEGION, a VA tool that allows
comparison of regression models across two modeling strategies:
(1) Hyperparameter Tuning, and (2) Feature Engineering seeking
to assist users in knowing which modeling strategy is suited to their
problem. Thus it helps users to select an appropriate modeling strat-
egy in addition to selecting preferred models. While the first type
of models are constructed using hyperparameter tuning (with HP JS
library [15]) of Tensorflow based linear regression models [16], the
other type is implemented as a custom designed feature engineering
module on a traditional boosted ridge regression model built using
the Machine Learning JS library [17]. It visually represents models
from these two categories by placing them in separate bins side by
side in a Stacked Horizontal Bar View (refer Figure 1-A). While
the color represents the model category (and a model performance
metric), the size of the bars represent a user specified performance
metric such as adjusted R2− Score, Root Mean Squared Error
(RMSE) etc. Users can also see system recommended top ’k’
models’ prediction output per data instance, through the Instance
Unit View (refer Figure 1-B) highlighting prediction error per data
instance. Furthermore, users can compare high performing models
from each category by exploring feature correlation, variance etc.
(see Figure 4) and hyperparameter settings (see Figure 1-C, and
Figure 3) that led to the construction of their preferred models.
LEGION visualises this information through a series of stacked
unit visualizations (see Figure 3) and small multiples of scatterplot
charts. To continue their analysis process, users can specify new
hyperparameter settings (i.e., hyperparameter names and value
ranges to construct new models), and a set of features (based on
the learning about the models and the data in the analysis process)
to further train new models that better support their expectations.

Incremental construction of multiple ML models, and analysing
them leading to the selection of a specific modeling strategy and
a set of preferred model(s) is a very complex task that require
technical expertise in both software skills and elementary data
science. For instance, current multi-model systems [7], [18], require
users to adapt to the steep learning curve of interacting with a
complex user interface with a complex workflow, in addition to
be able to comprehend model metrics, hyperparameters etc. While
we are motivated to aid comparison of multiple candidate models
to help users learn about them and the underlying data, we also
seek to simplify the complex user experience of interacting with
multiple models prevalent in current systems. To that end, we aid
comparison of models in relation to prediction on relevant data
instances or explaining a models’ reasoning process through the
visualization of top weighted features (by the model) and their
correlation with the target label in the data. As such, if a user
notices that a high performing model weights features that are
more relevant to their domain, they may feel more confident about
it than a similar black-boxed model. Likewise, if a user sees high
performing models fail to correctly predict relevant data instances,
in comparison to other relatively lower performing models that
correctly predicted these data instances, they may understand that
there is a tradeoff between the overall accuracy and the accuracy
over a subset of data instances. Furthermore, if the user sees models

from one category (e.g., hyperparameter tuning) are consistently
performing better, they learn which model construction strategy
is more suitable for their problem (and the data). In LEGION, if
users are not satisfied with any of the presented models, they can
also explore models that are constructed using an hybrid approach.

We also present two use cases with real world datasets of
Cancer Mortality Rate prediction [19] and US Stock Price variation
prediction [20]. Through these use cases we explain how LEGION
helps users: (1) in deciding on modeling strategy that is appropriate
for their problem, (2) to learn about features in the data that drive
the construction of preferred models, and (3) to retrieve various
hyperparameter settings of constructed models that specifically
solved their analytic goals. Our contributions are:
• A visual analytic system LEGION that allows users to

compare models constructed using either hyperparameter
tuning or feature engineering approach.

• Two use cases on real world datasets that explain the utility
of the tool and validate that LEGION is effective in teaching
users about model tradeoffs and about the underlying data.

2 RELATED WORK

2.1 Interactive modeling in VA
In visual analytics there are many systems that have looked at
interactive construction of models [21], [22], [23], [24], [25], [26],
[27]. These include models for classification task [28], [29], [30],
interactive labeling [31], [32], dimensionality reduction [33], [34],
clustering [7], [18], metric learning [35], etc. These systems are
driven by the concept that users can visually adjust model param-
eters by direct interaction with graphical visual interface elements,
that drive the underlying model adjustment/steering process to
adhere to their expectations. Using this approach users can bypass
the need to know specific details on model hyperparameters, model
performance metrics and other mathematical constructs, the burden
of which is off-loaded to the system. For example, the system
ModelTracker visualizes model performance metrics in relation
to data instances and their similarity in the feature space to help
model developers debug models [36]. Using a similar interaction
approach, in this paper we are specifically looking at regression
tasks in ML. Regression is a process that aids prediction of a
continuous value given a set of training examples (e.g., rows and
columns in a table). For instance, regression allows predicting
the price of a house (given a set of features such as size, rooms,
location, etc.) [3]. In VA there are many interactive regression tools
e.g., Piringer et al. demonstrated a multiple regression modeling
system that uses comparison of multiple model outputs to help
users select a preferred model [9]. BEAMES, another regression
modeler allows users to interactively inspect, select, and steer
multiple regression models [10]. While these tools are effective to
solve a regression task, they do not allow comparison of multiple
models with respect to how they were constructed, an aspect of
modeling that we are specifically exploring in this paper.

2.2 AutoML and Hyperparameter Tuning
Model selection is a pivotal problem in making ML accessible to a
wide range of people, use cases, and domains. This model selection
problem can be framed as, given a set of learning algorithms A, a
set of associated hyperparameters H, a dataset D (split into train
and test set), a very specific ML task (e.g., regression) T , the goal
is to select a model m (from a large set of model options M such



3

Fig. 1. LEGION - multi-regression modeller. A. Stacked Horizontal Bar View showing regression models constructed using two techniques in separate
bins (blue and red bars). B. Instance Unit View. C. Parameter Comparison View. D. Model description in text. E. Radial View showing top ’k’ models’
RMSE on train and test set (color coded by modeling strategy used). F. Buttons to toggle new models and control panel.

that it maximizes or minimizes a pre-defined performance metric P.
As this task often requires significant technical expertise, recently
researchers demonstrated applications that automate this process
of model selection by the invention of AutoML platforms such as
AutoWeka [37], [38], SigOpt [39], TPOT [40], HyperOpt [41], [42],
or Auto-sklearn [43]. Other tools have also looked at visually tuning
hyperparameters to help users decide on optimal models [44], [45].
These systems apply techniques such as Bayesian optimization [43],
evolutionary algorithms [40], deep reinforcement learning [46], or
other custom-defined evaluation metrics [47] to select a model for
the given problem case. However, these tools fail to incorporate
subjective preferences of end-users, that drives the motivation to
include humans-in-the-loop of model construction and selection
[48]. To bridge the gap between AutoML and the conventional
process of manually selecting models, we are motivated to present
a visual analysis tool that automatically drives model construction
and recommendation of preferred models for selection (guided by
users), based on comparative analysis of candidate models.

2.3 Multi-model systems in VA
VA literature has seen the surge of multi-model based VA systems
that provide users access to many ML models. These span various
ML problems e.g., Clustervision assisted users to find better
performing cluster models [7], Starspire showed building text
analytic models [49] using multiple models, Prospect facilitated
adjusting data properties as users interact with multiple ML models
[50]. As we are interested in regression task, we looked at similar
multi-model interfaces for regression modeling such as Hypermoval
[9], RegressionExplorer [5], BEAMES [10] etc. A similar system
Gamut is a regression modeler using GAM models that allows
interpreting model output in relation to data instances and features
[12]. Many of these systems also allow model comparison such as
MLCube [13] that provides a tabular list view to see characteristics

of different models. Similarly StackGenVis assists users to decide
between different model options by managing data instances,
selecting relevant feature combinations, and finally selecting highly
performant models [51]. Mühlbacher et al. showed a technique
to present trade-off analysis, model validation, and comparison
of many regression models [52]. As effective as these and many
other [53], [54], [55], [56], [57], [58] multi-model tools are, only a
subset of them provide direct model comparison. Even the tools
that deploy model comparison, most of them compare models of
a specific type or class e.g., boosting models or random forests
etc. More importantly, none of them clarify the distinction between
models in relation to how they are constructed. Thus to answer
users’ question: What modeling strategy should they choose?, we
seek to build a visual analysis tool by showing direct comparison
of regression models with respect to how they were constructed.

To summarize, from the literature review we understood that
we need to design a visual interface that expands current multi-
model tools and model comparison approaches by allowing model
comparison with respect to their construction techniques. Our
technique should explain incremental model incoherencies or
similarities in relation to data instances and feature correlations.

3 SYSTEM: UI AND TECHNIQUE

Here we describe our visual analytic prototype - LEGION,
designed to interactively construct multiple regression models. We
first describe a set of design guidelines and tasks that we derived
based on extensive literature review, and our past efforts in the
space of multi-model based VA systems.

3.1 Design Guidelines and Tasks
DG1 : Visually show model incoherencies based on their
construction technique. There are many regression model



4

Fig. 2. Instance Unit View - A. Training instances shown as orange bars,
encode prediction errors (negative errors are shown by upside down
bars. B. Each row is a models’ prediction output, showing its name and
color coded by the modeling technique. C. Users can brush to select
data instances (shown in white), LEGION highlights preferred models.
D. Test Instances.
construction techniques, each leads to models that may be are
similar or different from one another. Users should be able to
perceive these similarities and incoherencies amongst models as
they compare a set of candidate models.
DG2 : Present model implication on the data, and the use
of specific features: Users should be able to view a models’
implication on the data (at the instance level) in terms of prediction
output value. Furthermore, they should be able to learn about
features in the data that are more relevant to the construction of
better performing models; be able to adjust the selection and the
use of these features as they incrementally construct models.
DG3 : Guide users with model recommendations: There can be
many regression models constructed using either the hyperparame-
ter tuning or the random selection of feature technique. The system
should guide the users to look at specific models that may better
suit their data analytic goals. There should be a system guided
recommendation of models that assists users to inspect specific
models as they interact with the visual interface.
DG4 : Interactive feedback driven construction and selection
of new models: System should allow the possibility of interactive
adjustment of models performance, and future construction and
selection of new models by the user. As such, users interactive
feedback should directly adjust the construction of new models
and the underlying search process of the system, as it samples new
model using the discussed construction techniques.

Based on these guidelines, we set forth the following set of
tasks for our proposed system.
T1 : Interactive construction of models using two strategies:
Users should be able to interactively construct regression models
using two strategies: hyperparameter tuning and random selection
of features. Users should be able to incrementally construct these
models by adjusting their input preferences through interaction.
T2 : Compare models to select an appropriate modeling
strategy in relation to subset data instances: Users should
be able to compare models with each other with the goal to
decide on a preferred modeling strategy. In doing so, they should
learn similarities and differences between them, and other critical
tradeoffs as they decide on selecting their preferred model and
modeling strategy for the task.
T3 : Allow users to interactively navigate within the space of
sampled candidate regression models. Users should be able to
provide feedback to the system by directly manipulating visual
encoding of various entities represented in the system or through
control panel style input widgets.

3.2 User Interface
LEGION contains these main views: (1) Stacked Horizontal Bar

Fig. 3. Parameter Comparison View - A. Hovering on a model based
on the hyperparameter value. B. User brushes mouse on the x-axis to
highlight chosen models on the Horizontal Stacked Bar View.

View, (2) Radial View, (3) Instance Unit View, (4) Feature Explorer
View, and (3) Parameter Comparison View, as explained below:
Stacked Horizontal Bar: This view shows regression models
as horizontal bars placed in separate bins; each representing
models constructed using a specific modeling technique such as
hyperparameter tuning or random selection of features. In this
prototype two such bins can be seen (Figure 1-A), however more
can be added. Every row in the bin contains a set of bars (each
a regression model). While the size of the bars encode a specified
model metric such as RMSE value, the color encodes another
metric such as residual error or adjusted R2−Score. Inspired from
the abacus design, this view is designed to cluster models such that
better performing models can be easily visually perceived from
the large collection of models. Within each bar a horizontal black
line encodes number of features used by the model in its training
process. In addition, users can toggle to see models from all the
bins in one bin vertically stacked with each other, allowing users
to directly compare models’ prediction metrics.

On a typical laptop screen size each bin can hold approx. 70-80
models, and if more models needs to be added, this view can scroll
to scale. The bars that are placed per row (in a bin) are optimized
to accommodate models as they are trained. To visually cluster
high performing models together, they are grouped with relatively
poor performing models per row. Here performance is indicated
by the length of the bar; higher performing models are placed on
the left. By default, the vertical ordering of the models are guided
by the order of model construction, however, users can sort the
models vertically by a specified metric e.g., residual error, RMSE,
R2−Score, number of correct predictions on the test set, etc. (Fig-
ure 5-D). The visual layout helps in comparison of models within a
bin and also with models from the adjacent bin. Furthermore, this
design adapts progressive visual analytic principles [59], meaning
as models are constructed they are placed per row, without the
need to re-calculate the layout as we see in some other visual
arrangement techniques e.g, force directed graph layouts etc.
Radial View: This view places two stacked radial bar charts next
to each other, each representing a set of recommended models’
performance metric on training and test set (see Figure 1-E). When
a user clicks on a bar on the Stacked Horizontal Bar View, a set of
‘k’ recommended models are shown in this view, while the clicked
model is highlighted with a white stroke. The color of the bars
are synced with the Stacked Horizontal Bar View to ensure direct
comparison of models can be made in relation to construction
techniques. This view facilitates an overview of which model types
performed better or worse on the training and test set. It is accom-



5

Fig. 4. Feature Explorer - A. Scatterplot matrix showing highly variant fea-
tures. B. Horizontal bar chart showing top weighted features in a model.

panied by a textuall description of the characterisic of a selected
model and the total collection of models as seen in Figure 1-D.
Instance Unit View: This view lists prediction output from
‘k’ recommended models as horizontal bar plots, where the x
axis plots data instances and y axis plots the prediction error
(Figure 2-B). Each models’ prediction error per data instance on
the training and validation set are encoded as vertical bars. If the
error is positive then the bars are on top of the x axis, while if
negative then the bars are on the bottom. The color ramp further
emphasizes this concept. The model type (HPT or FST) is shown
by a colored badge on its left. Users can brush over the x axis
to highlight a subset of data instances. In response, LEGION
highlights recommended models on the Stacked Horizontal Bar
View that performed better on the chosen data instances.
Feature Explorer: When models are selected by users or when
new models are constructed then the top performing features are
shown in this view (Figure 4). They are shown as: (1) a set of
‘k’ (k=3, can be adjusted) scatterplot charts showing correlation
between the feature and the target variable, (2) a scatterplot matrix
of top 4 highly variant features, and (3) a horizontal bar chart
listing highly weighted features in the model. Users can brush over
the correlation scatterplots or the scatterplot matrix to highlight
data instances in the Instance Unit View, prompting LEGION to
recommend and highlight models in the Stacked Horizontal Bar
View that performed well on these data instances.
Parameter Comparison View: In this view a set of unit
visualizations shown that are stacked vertically (Figure 3). Each
such view encodes R2 score (on test set) on its y axis, while
the x axis shows a model hyperparameter such as learning-rate,
drop-out-value, etc. Models are encoded as circles where the color
encode the model type (HPT or FST). Using this view the user
learns about hyperparameter settings that led to the construction of
better performing models and their types. Users can brush on the x
axis (Figure 3-B) to highlight the models on the Stacked Horizontal
Bar View. One of the views in this set encodes number of features
on the x axis, communicating how many feature combinations led
to the construction of better performing models (e.g, R2−Score).

3.3 Technique

The underlying multi-model construction and selection of models
adopts a methodical and systematic process further discussed here.

Fig. 5. A. Users can train new models, or load pre-trained models. B.
Control panel to specify hyperparameter range values. C. Control panel
to specify selected features and their weightings. D. Models can be
sorted by a performance metric value.

Model Construction Technique: Our technique builds two
types of models. The first type U , represents models constructed
using Tensorflow JS simulating a linear regression model. In our
implementation we adapted this example [60] and further modified
the architecture of the network to adapt to the tested datasets. We
setup the base Tensorflow model with hyperparameters such as
num-hidden-layers = 3, nodes-in-hidden-layer = 20, drop-out-rate
=0.01, optimizer = ‘sgd′, num-epochs = 20. The other model type
V is a custom-designed boosted ridge-regression model with ‘k’ (a
hyperparameter) underlying regression models vi. We utilised ridge-
regression model from the Machine Learning JS Library [61]. Over-
all, V takes these hyperparameters: num-epochs = 10, learning-rate
= 0.12, l2-weight = 0.03, loss-func = ‘leastsquares′, k-models = 5.
These hyperparameters are set by running the model with randomly
assigned hyperparameters n= 10 (value can be adjusted) times, and
the best performing models’ hyperparameter settings were used to
construct V , and never adjusted when user interactively constructed
models. We also considered using the same learning algorithm for
both U and V , however, tuning hyperparameters for a Tensorflow
model seemed a more common practice by ML developers [62].
Input Data and Model overfitting: Our technique consumes the
input data D, splits it into a training set T , a set of m vallidation
sets S, and a test set R. As users iteratively construct models, T
is used to train new regression models (U and V ), however, per
iteration a new validation set from S = S1,S2,S3....Sm is used to
test the model. Thus the trained model (U or V ) never sees the
validation data instances before. Multiple sets of validation data is
used to ensure the model does not overfit and always is tested on
unseen data instances. Finally users can validate the trained model
on R as they export any model.
Hyperparameter Tuning: Furthermore, as discussed earlier,
models of type U are optimized using the hyperparameter tuning
technique. To that end, we utilised the HPJS library [15], to tune
hyperparameters of the Tensorflow models (U). To HPJS, our
technique provides the model U , a set of hyperparameters H to tune,
and a domain range d (within which HPJS samples hyperparameter
values) to construct new regression models. We also provide a
loss metric ω = ‘meanSquaredError’ to drive the hyperparameter
optimization process guided by HPJS.
Feature Engineering: Feature engineering ensures that predictors
(features) from the input data are encoded in a manner to
maximize a models’ performance. Within the scope of feature
engineering, there is feature transformation and feature selection.



6

Fig. 6. Flow-diagram of the max-heap data structure to store models for
recommendation. Numbers represent a score computed for each model.

While feature selection limits number of features utilised to train
the models, feature transformation includes various family of
algorithms that performs operations on the input features, such as
scaling, normalizing, random projections etc. to ensure the model
accurately gets informed from the data. Our technique allows
random selection of features F and application of a preset list of
feature transformation rules A (randomly chosen) to these features
before constructing models. Let’s say input data has l features ,
F = F1,F2,F3....Fl , then our modeling engine, samples multiple
models e,g, V = V1,V2,V3..., where each Vi is trained using j
( j <= l) randomly chosen features e.g., F = F3,F4,F10.... Similarly,
a subset of the features in F are transformed using a random
selection of feature transformation rules in A. For this prototye
A includes, variance scaling, standardization, mean removal, and
discretization (can be extended in future).

Algorithm 1 Algorithm to recommend models
1: INPUT: u_inst = user selected data, num = number of models
2: PARAMS: model_list, data . stored on the backend
3: function BUILD_MODEL_HEAP

4: for each item in data do
5: m_hashmap← create_heap(model_list,data[item])
6: end for
7: return m_hashmap . dict of model heap per data instance
8: end function
9: function FIND_RECOMM_MODELS(u_inst, num)

10: m_hashmap← build_model_heap()
11: model_arrs← [] . list to store closest models
12: for each item in u_inst do
13: m_recom← get_recom_models(m_hashmap, item,num)
14: m_others← get_rand_models(item,1)
15: model_arrs.concat(m_recom,m_others)
16: end for
17: recom_models← get_overlap_mods(model_arrs,num)
18: if recom_models.length == 0 then
19: recom_models← model_arrs.slice(0,num)
20: end if
21: return recom_models . list of recommended models
22: end function

Model Recommendation Technique: User interaction in LE-
GION includes: (1) selecting data instances from either the Instance
Unit View or the Feature Explorer View, and (2) selecting models

from the Stacked Horizontal Bar View. As they interact, a set of
high performing models are recommended for them to consider. To
implement this workflow we designed our model recommendation
engine inspired by the previous work of Vainshtein et al. [63]
and Shapira et al. [64]. In this technique we represent various
characteristics of models (U , V ) by extracting their meta features
in M. It contains information such as model hyperparameters
H, model metrics W (containing RMSE, R2− Score, Adjusted
R2−Score, Max-Error, and Residual-Score), feature weights F and
user feedback E. E may include number of times users exported
a model, clicked on it, or if they liked it. We weight H, W , F
and E by φ = φh,φw,φ f , and φe, respectively. These weights are
hand chosen by us by repeated trial and error with various datasets.
Finally, we rank the models using M and φ ; a process that generates
a rank-score (Qu, and Qv) to each model in U and V respectively.
Next we describe how LEGION recommends models for the two
types of user interaction.

Using Qu, and Qv, we store the models in two max-heap data
structures (HPu and HPv), where the model with the maximum
rank-score (e..g, Quk) is stored at the root (see Figure 6). In the
first interaction type, when users select a model (say Ui with
rank-score Qui) our technique queries HPu for top k closest models
to Qui. The max-heap responds with closest models Cu with a
similar rank-score (see Algorithm 1) and then visualizes it. As
the rank score is derived from various model characteristics, (as
summarized in its meta data M), such as hyperparameters, model
metrics, number of features and user feedback, the set of models in
Cu are expected to be similar to Ui. Besides showing closest models
to Qui, we also include a handful set of randomly chosen models
to allow users the opportunity to explore a diverse set of models.

The second interaction type is when users select data instances.
We use trained models to predict labels for training set T and test
set Si as Lt and Ls respectively. Next we store a hash-map (e.g., a
dict in python) data structure D, where the key is the data instance
id, and the value is a max-heap of ‘K’ models that performed better
than others in the collection. When new models are trained we look
up D; for each data instance (both train and test set) we check if
that model performed better than any other model already stored
in the max-heap. If yes, we replace it with this model. However,
if the max-heap is empty then, if the model satisfies a threshhold
value α (a hyperparameter) then it gets stored in the max-heap.
Constructing the hash-map D takes O(vlogK) time, where v is the
number of data instances in the training or test set and K is the
number of recommended models we want to store. As users select
specific data instances, the system refers D and recommends K
models (either U or V ) that performed better on these instances.

4 USAGE SCENARIOS

4.1 Death Rate Prediction
In this usage scenario we show how LEGION can assist users
in selecting regression models based on a specified performance
metric and model construction technique. Taylor is a data analyst
(with elementary understanding of regression) at a government
healthcare agency and they are building a regression model to
predict Death-Rate-Per-County using the Cancer Mortality Rate
Data (per US County) [19]. The dataset contains 3048 rows, each
row representing the death rate of a US county. Furthermore,
it has 34 attributes (1 categorical variable) including incident-
rate, median-age, avg-household-size, birth-rate, perc-resid-health-
coverage, and others. They load the data using Pandas python



7

package in a Jupyter Notebook, and split the data into a training
and test set. Next, using SK Learn’s machine learning library Taylor
builds a linear regression model whose baseline performance on
the test set is R2Score = 0.453 and RMSE = 120.43 (RMSE = root
mean square error). Not content with this models’ performance and
not sure how to improve it further, they choose to load the data in
LEGION to continue constructing better regression models.

LEGION splits the data into a training set (2100 rows), and
a set of 3 validation sets (each 300 rows, utilised per iteration
of model construction). When loaded, the system asks Taylor to
train new models or load previously trained models (Figure 5-A).
They decide to train a set of new regression models. After few
minutes (15− 18) of training, LEGION automatically saves the
weights of these models for future use. Next Taylor explores the
Stacked Horizontal Bar View (see Figure 1-A) to see two bins
which stores: (1) 36 linear regression models constructed using
Hyperparameter Tuning (HPT, implemented using TensorFlow),
and (2) 42 Boosted Regressors using random selection and
transformation of features (FST) technique. Seeing the length
of the bars in each bins Taylor notices that most of the models in
the FST category are better performers in relation to the default
metric - ‘RMSE’ (other metrics can be specified through a control
panel). They hover over one such model Model M− 12 to see
that its R2− Score is 0.231 and its RMSE is 56.3, which is still
high, but better than the one shown by the base line model. On
clicking the model M− 4 from the FST category, Taylor sees
a recommendation of 20 (6 models from HPT category) other
similarly high performing models on the Radial View (see Figure 1-
E). Based on the color overlays representing model types on the
two Radial Bar plots, they see that the models trained using HPT
performed better on the test set with a lower RMSE of 53.71.

Inquisitive to learn more about models trained by HPT, They
click on the model M−28 (RMSE = 58.73, R2−Score = 0.382, on
validation set) and open the Parameter Comparison View to see
its hyperparameters (Figure 1-C). From this view, they learn that
there are about 8 high performing models in HPT category trained
using learning-rate in the range of 0.05−0.08, num-hidden-layers
as 3, and drop−out−rate in the range of 0.25−0.33. Furthermore,
Taylor learns that 10 out of 34 features (e.g., median-age-male, avg-
household-size, birth-rate, etc.) were weighted heavily by these
models. They open the Feature Explorer View (see Figure 4)
to inspect the scatterplot matrix and the correlation plot to learn
that there is a strong correlation between some of these features
e.g., median-age-male, and median-income and the dependent
variable. However, these models did not include the features
percent-married, and incidence-rate that Taylor considered to be
very strong predictors of the Death-Rate. To improve the models’
performance further, Taylor opens the Control Panel, adjusts the
hyperparameters and selects a subset of total 18 features (choices
made based on the interaction so far, and their prior knowledge).
Next, they trigger LEGION to construct new models.

As LEGION responds, they inspect new models shown in the
Stacked Horizontal Bar View (Figure 1-A). Based on the bar size,
and the color (encoding a higher R2 Score), they click on Model
M− 17 (with RMSE, 12.23) from the FST category and inspect
the Instance View to see the prediction errors per data instance
(on both train and validation set). They understand that the model
overfitted as they find many long error bars on the validation set
(see Figure 2). They drag their mouse on the training instance rows
from 120−180 (where the error seemed highest, see (Figure 2-C).
In response LEGION highlights recommended models (on the

Stacked Horizontal Bar View) that performed better on data these
instances From the recommended models, Taylor clicks on Model
M−21 (RMSE = 10.31, R2−Score = 0.875 on validation set, with
FST technique); they notice that this model did not overfit (as seen
in the Radial Views, Figure 1-E). Finally Taylor inspects the model
hyperparameters and the features used in the model training from
the Parameter Comparison View (Figure 3) before exporting it
to Jupyter notebook for further analysis. Through this use case,
we demonstrate how Taylor was able to explore two different
regression modeling strategies to compare candidate models.
LEGION assisted them in model construction and further, to select
a generalizable model that trained on features that Taylor trusted.

4.2 Stock Price Prediction

Consider Andy is a stock market analyst and wants to predict
future stock price variations to recommend which stocks to buy
or sell. They have taken an elementary online course on Machine
Learning, and using this knowledge is motivated to construct a
regression model on the US Stock Price dataset [20]. This data
contains 22000 rows of stocks from the year 2014−2018. It has
225 columns including revenue, inventory-growth, avg-payable,
debt-to-assets, debt-to-equity, etc. The target variable is the column
price-variation, which indicates how much the stock price may
vary (expressed in percentage, can be negative). If the value is
positive then Andy would recommend to buy the stock, while if
it is negative then their recommendation will be to sell the stock.
As the data contains a plethora of financial indicators as features,
Andy is not certain which of these are stronger predictor of the
target variable than others. To continue analysis, they load the data
in LEGION and construct many regression models.

LEGION first splits the data into a training set of 16000 rows,
and 3 validation sets (each 2000 rows), then responds with 72
regression models built with hyperparameter tuning (HPT) and 83
regression models built using random selection of features (FST)
technique. On the Radial View, Andy notices top 20 recommended
regression models’ with their R2−Score on train and validation set.
From this set, they click on Model M−32 of FST type with RMSE
as 132.2, and R2−Score as 0.541 on validation set. Furthermore,
in the Stacked Horizontal Bar View (Figure 1-A), they see a
short black line indicating that this model used only 32 (out of 225)
features from the data to map its characteristic. On inspecting the
Scatterplot Matrix and the Feature Weight bar plot (Figure 4), they
notice that this model left out many important indicators of stock
price variation such as current-ratio, price-to-sales-ratio, earnings-
yield etc. On the Stacked Horizontal Bar View, they click on
another model M−43 of similar RMSE (112.23) and R2−Score
of 0.592 (perceived based on the length of the bar and its color
encoding). LEGION updates the Radial View (Figure 1-E) with a
set of new recommended models and the Feature Explorer View
with the features that this model trained on. From the correlation
plot in the Feature Explorer, they find that this model used more
relevant features than the other and thus seem more useful for their
analysis. Next they open the Instance Unit View (Figure 2) to
further learn that the most of the high performing models used
atleast 130 features (out of 225). To retrieve a model with a much
lower RMSE Andy inspects models from the HPT type. They brush
their mouse on the Parameter Comparison View (Figure 3) in the
neighborhood of learning-rate with value 0.003 and hidden-layer
with value 3. In response, LEGION highlights high performing
models (on the Stacked Horizontal Bar View); from which Andy



8

clicks on Model M− 12 with RMSE = 89.24 and inspects the
Instance Unit View to see its implication on the data.

They find that this model performed poorly on the validation set,
though showed relatively lower RMSE. They brush their mouse on
a set of important stocks from the training set where the prediction
error was higher (see Figure 2-C). In response LEGION highlights
a set of model of both types (HPT and FST) that performed better
on these instances. From the recommended models Andy (as seen
on the Stacked Horizontal Bar View, Figure 1-A), they click on
Model M−74 (RMSE = 81.2) to understand that this model used
most of the relevant features from the data (over 143 features).
In order to further find better performing models Andy opens the
control panel (Figure 5-B,C), adjusts the hyperparameter settings
based on the values they learned from the Parameter Comparison
View, and discards 30 features that have missing values and are
outliers (learned from the correlation plots and the scatterplot
matrix). Next they trigger LEGION to construct new models.

After an hour of training, Andy continues their model con-
struction and model exploration process. LEGION shows new
models and recommends better performing models on the Radial
View. Andyotices that the avg. R2− Score has gone up to 0.962
(compared to 0.541 before). Based on the recommendations, Andy
clicks on Model M−11 (RMSE = 12.23, FST type) and inspects
the Instance Unit View. They learn that this model overfitted and
thus brushes on a subset of incorrectly predicted validation data
instances. As LEGION highlights other recommended models on
the Stacked Horizontal Bar View, they inspect Models M− 5
to M− 13, all similarly high performing models of HPT type.
They see from the horizontal black line that some of these models
weighted 64 features very highly most of which were very relevant
to predict the price variation of the stock. Next, Andy explores
these models on the Parameter Comparison View to learn about
their hyperparameter settings (Figure 3). They choose to select
Model M−12 as it exhibited a simpler model architecture (based
on the hyperparameter values). Finally, Andy exports the model to
continue analysis and report results to their manager to recommend
stock buying options to their clients.

5 DISCUSSION AND LIMITATIONS

Broader implication of model comparison: In this paper, we
were driven by the intuition that model developers spend extensive
time in tuning models to achieve a desired goal and that entails
exploring and experimenting with numerous modeling strategies.
We hypothesize that knowing about the merits of different
modeling strategies early on, in the model selection process may
save time, effort, and compute resources. This paper specifically
extends current research on model selection, by empowering users
not only to select a model, but also facilitating the opportunity
to select a preferred modeling strategy for their problem. While
model selection means completing a data analytic task, selecting
a modeling strategy helps users to learn and discover something
novel about the modeling process.

That being said, this paper demonstrated visual comparison
of two of the common modeling strategies. However, there are
many other strategies such as using data augmentation, changing
input data size (e.g, analysis of learning curves in ML [65]), etc.
to construct models. The visual design of the (Stacked Horizontal
Bar View) is designed to scale with the number of comparison one
needs to make; for example to compare four modeling techniques,
the current design would present four adjacent bins, each holding

bars or sequence of cell grids to encode models. In the future we
plan to test the current visual design further, with more than three
modeling strategies side by side.
Tradeoffs in modeling strategies: From the use cases (refer
Section 4.1 and 4.2), we learned that for both the datasets the
modeling problem was not so straight forward, and thus needed
extensive exploration of the model space. Furthermore, through
these use cases we demonstrated how LEGION assisted users in
not only comparing models in relation to construction techniques,
number of features, and hyperparameter settings applied, but also
facilitating learning the data and the useful predictors (features)
in it. For example, using our system users may filter similarly
performing ‘k’ models and then compare them in relation to how
simple or complex they are, how interpretable they can be, or
what features they use to map the data; knowledge about these
aspects may guide users to make informed choices as they select
models. LEGION assists users in adapting the ‘Occam’s Razor’
concept [66] that advocates selecting simpler models from a set of
candidate models, given all of them perform highly/similarly on
a specified performance metric. In the future, we plan to extend
this functionality by further recommending adjustments users can
make, that may reduce complexity of a black box model without
losing its performance.
Advent of Feature Engineering in LEGION: Feature engineer-
ing presents ways to represent input data by applying operations
that transforms raw data into a format that better characterizes
the underlying information, directly impacting models’ predictive
performance. As part of feature engineering one can either select
features, apply specific transformative operations on chosen fea-
tures (e.g, scaling, normalizing, etc.), or can extract/construct new
features e.g., create new features from existing ones. In this paper
we have shown implication on models’ prediction when constructed
using random selection of features and random application of
transformative operations. However, at present LEGION does not
support feature extraction/construction [67], which we plan to
prototype and test in the near future. Another approach we may
consider is to apply feature augmentation using new data sources
[68] to construct new models for comparison.
Model agnosticity, and scalability: LEGION is designed to
work with tabular data to build regression models. However,
the backend is also flexible to support other ML tasks such as
classification with little adjustments to the current code base.
Furthermore, currently the system supports two modes of model
construction: (1) real-time model training, and (2) pre-training
models and then loading these models to continue analysis. The
first approach is suitable for medium size datasets (rows < 10k,
columns < 30), wherein models are visually rendered as they finish
training (similar to progressive visual analytic style rendering of
views [59]). The second approach is designed to support larger
datasets (tested with dataset with row <= 100k, column <= 600),
wherein users can train models overnight and then later analyse
and compare models when the training is complete.

Furthermore, the Horizontal Stacked Bar View, is designed
to scale with the number of models’ it needs to render. It can be
transformed into a heatmap view, where pixel(s) instead of bars can
visually encode a model, the size or area of which can represent a
performance metric. On the engineering side, LEGION is designed
with Tensorflow JS and MachineLearning JS, both of which features
client-side model computation, off-loading the need for powerful
servers. On the frontend the visualizations are implemented using
a game design framework Phaser JS [69], that exploits GPU



9

rendering on a browser. Client-side computation is designed to take
advantage of better compute devices many ML practitioners have
and further reduce the system design complexity on the server-side.

6 CONCLUSION

In this work, we demonstrate that multi-model based visual
analytic systems can visually represent models by their construction
technique, leading to more in-depth comparison to assist users in
model selection. With our prototype LEGION, we present how
users can be guided as they decide on which model construction
technique to adopt and how models can be selected given a plethora
of tradeoffs and model incoherencies that exists in numerous ML
problems. To that end, with two real world datasets we show how
LEGION can help users to interctively construct regression models,
comparing their tradeoffs, and providing interactive feedback to
further adjust these models to suit their specific data analytic goals.

REFERENCES

[1] M. A. Ahmad, C. Eckert, and A. Teredesai, “Interpretable machine
learning in healthcare,” in Proceedings of the 2018 ACM International
Conference on Bioinformatics, Computational Biology, and Health
Informatics, ser. BCB ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 559–560. [Online]. Available:
https://doi.org/10.1145/3233547.3233667

[2] S. M. Wiens J, Saria S, “Do no harm: a roadmap for responsible
machine learning for health care,” in Proceedings of the 2018 ACM
International Conference on Bioinformatics, Computational Biology, and
Health Informatics. Nat Med. 2019, 2019, p. 1337–1340.

[3] B. Park and J. K. Bae, “Using machine learning algorithms for housing
price prediction: The case of fairfax county, virginia housing data,”
Expert Systems with Applications, vol. 42, no. 6, pp. 2928 – 2934,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0957417414007325

[4] Y. SUN, A. K. C. WONG, and M. S. KAMEL, “Classification of
imbalanced data: A review,” International Journal of Pattern Recognition
and Artificial Intelligence, vol. 23, no. 04, pp. 687–719, 2009. [Online].
Available: https://doi.org/10.1142/S0218001409007326

[5] D. Dingen, M. van’t Veer, P. Houthuizen, E. H. J. Mestrom, E. H. H. M.
Korsten, A. R. A. Bouwman, and J. van Wijk, “Regressionexplorer:
Interactive exploration of logistic regression models with subgroup
analysis,” IEEE Transactions on Visualization and Computer Graphics,
vol. 25, no. 1, pp. 246–255, 2019.

[6] S. L’Yi, B. Ko, D. Shin, Y.-J. Cho, J. Lee, B. Kim, and J. Seo, “Xclusim: a
visual analytics tool for interactively comparing multiple clustering results
of bioinformatics data,” BMC Bioinformatics, vol. 16, no. 11, p. S5, Aug
2015. [Online]. Available: https://doi.org/10.1186/1471-2105-16-S11-S5

[7] B. C. Kwon, B. Eysenbach, J. Verma, K. Ng, C. D. Filippi, W. F.
Stewart, and A. Perer, “Clustervision: Visual supervision of unsupervised
clustering,” IEEE Transactions on Visualization and Computer Graphics,
vol. 24, no. 1, pp. 142–151, Jan 2018.

[8] M. Gleicher, A. Barve, X. Yu, and F. Heimerl, “Boxer: Interactive
Comparison of Classifier Results,” Computer Graphics Forum, 2020.

[9] H. Piringer, W. Berger, and J. Krasser, “Hypermoval: Interactive visual
validation of regression models for real-time simulation,” in Proceedings
of the 12th Eurographics / IEEE - VGTC Conference on Visualization,
ser. EuroVis’10. Chichester, UK: The Eurographs Association &#38;
John Wiley &#38; Sons, Ltd., 2010, pp. 983–992. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2009.01684.x

[10] S. Das, D. Cashman, R. Chang, and A. Endert, “Beames: Interactive
multimodel steering, selection, and inspection for regression tasks,” IEEE
Computer Graphics and Applications, vol. 39, no. 5, pp. 20–32, Sep.
2019.

[11] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams, “Squares:
Supporting interactive performance analysis for multiclass classifiers,”
IEEE Transactions on Visualization and Computer Graphics, vol. 23,
no. 1, pp. 61–70, Jan 2017.

[12] F. Hohman, A. Head, R. Caruana, R. DeLine, and S. M. Drucker, “Gamut:
A design probe to understand how data scientists understand machine
learning models,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2019.

[13] M. Kahng, D. Fang, and D. H. P. Chau, “Visual exploration of machine
learning results using data cube analysis,” in Proceedings of the Workshop
on Human-In-the-Loop Data Analytics, ser. HILDA ’16. New York, NY,
USA: Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2939502.2939503

[14] J. Zhao, M. Karimzadeh, A. Masjedi, T. Wang, X. Zhang, M. M. Crawford,
and D. S. Ebert, “Featureexplorer: Interactive feature selection and
exploration of regression models for hyperspectral images,” 2019 IEEE
Visualization Conference (VIS), pp. 161–165, 2019.

[15] “Hp js, hyperparameter optimization library in js, howpublished = https:
//hyperjs.herokuapp.com/, note = Accessed: 2020-16-07.”

[16] “Tensorflow js, howpublished = https://www.tensorflow.org/js, note =
Accessed: 2020-16-07.”

[17] “Machine learning js, howpublished = https://www.machinelearnjs.com/
api/linear_model.sgdregressor.html, note = Accessed: 2020-16-07.”

[18] M. Cavallo and Demiralp, “Clustrophile 2: Guided visual clustering
analysis,” IEEE Transactions on Visualization and Computer Graphics,
pp. 1–1, 2018.

[19] “Cancer mortality rates for us countiess, howpublished = https://data.
world/nrippner/ols-regression-challenge, note = Accessed: 2020-16-07.”

[20] “Financial indicators of us stocks, howpublished = https://www.kaggle.
com/cnic92/200-financial-indicators-of-us-stocks-20142018?select=
2015_financial_data.csv, note = Accessed: 2020-16-07.”

[21] E. T. Brown, J. Liu, C. E. Brodley, and R. Chang, “Dis-function:
Learning distance functions interactively,” in Proceedings of the 2012
IEEE Conference on Visual Analytics Science and Technology (VAST), ser.
VAST ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.
83–92. [Online]. Available: http://dx.doi.org/10.1109/VAST.2012.6400486

[22] L. Bradel, C. North, L. House, and S. Leman, “Multi-model semantic
interaction for text analytics,” in 2014 IEEE Conference on Visual
Analytics Science and Technology (VAST), Oct 2014, pp. 163–172.

[23] A. Endert, P. Fiaux, and C. North, “Semantic interaction for visual text
analytics,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’12. New York, NY, USA: ACM, 2012,
pp. 473–482.

[24] S. C. Leman, L. House, D. Maiti, A. Endert, and C. North, “Visual to
parametric interaction (v2pi),” PloS one, vol. 8, no. 3, p. e50474, 2013.

[25] A. Endert, C. Han, D. Maiti, L. House, S. C. Leman, and C. North,
“Observation-level Interaction with Statistical Models for Visual Analytics,”
in IEEE VAST, 2011, pp. 121–130.

[26] A. Endert, L. Bradel, and C. North, “Beyond Control Panels: Direct
Manipulation for Visual Analytics,” IEEE Computer Graphics and
Applications, vol. 33, no. 4, pp. 6–13, 2013.

[27] S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit, “Lineup: Visual
analysis of multi-attribute rankings,” IEEE Transactions on Visualization
and Computer Graphics (InfoVis ’13), vol. 19, no. 12, pp. 2277–2286,
2013.

[28] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. Chau, “Activis: Visual
exploration of industry-scale deep neural network models,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 24, pp. 88–97,
2017.

[29] H. Li, S. Fang, S. Mukhopadhyay, A. J. Saykin, and L. Shen, “Interactive
machine learning by visualization: A small data solution,” in 2018 IEEE
International Conference on Big Data (Big Data), Dec 2018, pp. 3513–
3521.

[30] M. Liu, S. Liu, H. Su, K. Cao, and J. Zhu, “Analyzing the noise robustness
of deep neural networks,” 2018 IEEE Conference on Visual Analytics
Science and Technology (VAST), pp. 60–71, 2018.

[31] Y. Sun, E. Lank, and M. Terry, “Label-and-learn: Visualizing the
likelihood of machine learning classifier’s success during data labeling,”
in Proceedings of the 22Nd International Conference on Intelligent User
Interfaces, ser. IUI ’17. New York, NY, USA: ACM, 2017, pp. 523–534.
[Online]. Available: http://doi.acm.org/10.1145/3025171.3025208

[32] M. Chegini, J. Bernard, P. Berger, A. Sourin, K. Andrews, and
T. Schreck, “Interactive labelling of a multivariate dataset for
supervised machine learning using linked visualisations, clustering,
and active learning,” Visual Informatics, vol. 3, no. 1, pp. 9 –
17, 2019, proceedings of PacificVAST 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2468502X19300178

[33] H. Kim, J. Choo, H. Park, and A. Endert, “Interaxis: Steering scatterplot
axes via observation-level interaction,” IEEE Transactions on Visualization
and Computer Graphics, vol. 22, no. 1, pp. 131–140, Jan 2016.

[34] D. Sacha, L. Zhang, M. Sedlmair, J. A. Lee, J. Peltonen, D. Weiskopf, S. C.
North, and D. A. Keim, “Visual interaction with dimensionality reduction:
A structured literature analysis,” IEEE Transactions on Visualization and
Computer Graphics, vol. 23, no. 1, pp. 241–250, 2017.

https://doi.org/10.1145/3233547.3233667
http://www.sciencedirect.com/science/article/pii/S0957417414007325
http://www.sciencedirect.com/science/article/pii/S0957417414007325
https://doi.org/10.1142/S0218001409007326
https://doi.org/10.1186/1471-2105-16-S11-S5
http://dx.doi.org/10.1111/j.1467-8659.2009.01684.x
https://doi.org/10.1145/2939502.2939503
https://hyperjs.herokuapp.com/
https://hyperjs.herokuapp.com/
https://www.tensorflow.org/js
https://www.machinelearnjs.com/api/linear_model.sgdregressor.html
https://www.machinelearnjs.com/api/linear_model.sgdregressor.html
https://data.world/nrippner/ols-regression-challenge
https://data.world/nrippner/ols-regression-challenge
https://www.kaggle.com/cnic92/200-financial-indicators-of-us-stocks-20142018?select=2015_financial_data.csv
https://www.kaggle.com/cnic92/200-financial-indicators-of-us-stocks-20142018?select=2015_financial_data.csv
https://www.kaggle.com/cnic92/200-financial-indicators-of-us-stocks-20142018?select=2015_financial_data.csv
http://dx.doi.org/10.1109/VAST.2012.6400486
http://doi.acm.org/10.1145/3025171.3025208
http://www.sciencedirect.com/science/article/pii/S2468502X19300178


10

[35] E. T. Brown, J. Liu, C. E. Brodley, and R. Chang, “Dis-function: Learning
distance functions interactively,” in 2012 IEEE Conference on Visual
Analytics Science and Technology (VAST), Oct 2012, pp. 83–92.

[36] S. Amershi, M. Chickering, S. Drucker, B. Lee, P. Simard, and J. Suh,
“Modeltracker: Redesigning performance analysis tools for machine
learning,” in Proceedings of the Conference on Human Factors in
Computing Systems (CHI 2015), April 2015.

[37] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
Combined selection and hyperparameter optimization of classification
algorithms,” in Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2013, pp.
847–855.

[38] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-
Brown, “Auto-weka 2.0: Automatic model selection and hyperparameter
optimization in weka,” Journal of Machine Learning Research, vol. 17,
pp. 1–5, 2016.

[39] S. Paparizos, J. M. Patel, and H. Jagadish, “Sigopt: Using schema to
optimize xml query processing,” in Data Engineering, 2007. ICDE 2007.
IEEE 23rd International Conference on. IEEE, 2007, pp. 1456–1460.

[40] T. T. Le, W. Fu, and J. H. Moore, “Scaling tree-based automated machine
learning to biomedical big data with a feature set selector,” Bioinformatics,
vol. 36, no. 1, pp. 250–256, 2020.

[41] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms,” in
Proceedings of the 12th Python in Science Conference, 2013, pp. 13–20.

[42] B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-sklearn: automatic
hyperparameter configuration for scikit-learn,” in ICML workshop on
AutoML, 2014.

[43] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and robust automated machine learning,” in Advances
in Neural Information Processing Systems, 2015, pp. 2962–2970.

[44] L. T., G. Convertino, W. Wang, and H. Most, “Hypertuner: Visual analytics
for hyperparameter tuning by professionals,” Machine Learning from User
Interaction for Visualization and Analytics, IEEE VIS 2018, 2018.

[45] M. K. J.-H. K. J. C. J.-W. H. N. S. Heungseok Park, Jinwoong Kim,
“Visualhypertuner: Visual analytics for user-driven hyperparamter tuning
of deep neural networks,” Proceedings of the 2nd SysML Conference,
2019.

[46] I. Drori, Y. Krishnamurthy, R. Rampin, R. Lourenço, J. P. Ono, K. Cho,
C. Silva, and J. Freire, “Alphad3m machine learning pipeline synthesis,”
2018.

[47] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Efficient hyperparameter optimization and infinitely many armed bandits,”
ArXiv, vol. abs/1603.06560, 2016.

[48] D. Sacha, M. Sedlmair, L. Zhang, J. A. Lee, J. Peltonen, D. Weiskopf, S. C.
North, and D. A. Keim, “What you see is what you can change: Human-
centered machine learning by interactive visualization,” Neurocomputing,
vol. 268, pp. 164–175, 2017.

[49] L. Bradel, C. North, L. House, and S. Leman, “Multi-model semantic
interaction for text analytics,” in 2014 IEEE Conference on Visual
Analytics Science and Technology (VAST), Oct 2014, pp. 163–172.

[50] K. Patel, S. M. Drucker, J. Fogarty, A. Kapoor, and D. S. Tan, “Using
multiple models to understand data,” in Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Volume
Two, ser. IJCAI’11. AAAI Press, 2011, pp. 1723–1728. [Online].
Available: http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-289

[51] A. Chatzimparmpas, R. M. Martins, K. Kucher, and A. Kerren, “Stack-
genvis: Alignment of data, algorithms, and models for stacking ensemble
learning using performance metrics,” ArXiv, vol. abs/2005.01575, 2020.

[52] T. Mühlbacher and H. Piringer, “A partition-based framework for building
and validating regression models,” IEEE Transactions on Visualization
and Computer Graphics, vol. 19, pp. 1962–1971, 2013.

[53] X. Zhao, Y. Wu, D. L. Lee, and W. Cui, “iforest: Interpreting random
forests via visual analytics,” IEEE Transactions on Visualization and
Computer Graphics, vol. 25, no. 1, pp. 407–416, 2019.

[54] S. Liu, J. Xiao, J. Liu, X. Wang, J. Wu, and J. Zhu, “Visual diagnosis of
tree boosting methods,” IEEE Transactions on Visualization and Computer
Graphics, vol. 24, no. 1, pp. 163–173, 2018.

[55] J. Talbot, B. Lee, A. Kapoor, and D. S. Tan, “Ensemblematrix: interactive
visualization to support machine learning with multiple classifiers,” in
CHI, 2009.

[56] Y. Zhao, S. K. Tasoulis, and T. Roos, “Manifold visualization via short
walks,” in EuroVis, 2016.

[57] G. Sehgal, M. Rawat, B. Gupta, G. Gupta, G. Sharma, and G. Shroff,
“Visual Predictive Analytics using iFuseML,” in EuroVis Workshop on
Visual Analytics (EuroVA), C. Tominski and T. von Landesberger, Eds.
The Eurographics Association, 2018.

[58] K. Zhao, M. O. Ward, E. A. Rundensteiner, and H. N. Higgins, “Lovis:
Local pattern visualization for model refinement,” Comput. Graph. Forum,
vol. 33, pp. 331–340, 2014.

[59] C. D. Stolper, A. Perer, and D. Gotz, “Progressive visual analytics: User-
driven visual exploration of in-progress analytics,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, pp. 1653–1662, 2014.

[60] “Tensorflow js regression modeling, howpublished = https://codelabs.
developers.google.com/codelabs/tfjs-training-regression/index.html#0,
note = Accessed: 2020-07-13.”

[61] “Machine learning js , howpublished = https://www.machinelearnjs.com/
api/linear_model.sgdregressor.html, note = Accessed: 2020-07-13.”

[62] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Proceedings of the European Conference on Computer Vision
(ECCV), September 2018.

[63] R. Vainshtein, A. Greenstein-Messica, G. Katz, B. Shapira, and L. Rokach,
“A hybrid approach for automatic model recommendation,” Proceedings
of the 27th ACM International Conference on Information and Knowledge
Management, 2018.

[64] N. Cohen-Shapira, L. Rokach, B. Shapira, G. Katz, and R. Vainshtein, “Au-
togrd: Model recommendation through graphical dataset representation,”
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019.

[65] C. Perlich, F. Provost, and J. S. Simonoff, “Tree induction vs.
logistic regression: A learning-curve analysis,” J. Mach. Learn.
Res., vol. 4, no. null, p. 211–255, Dec. 2003. [Online]. Available:
https://doi.org/10.1162/153244304322972694

[66] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Occam’s
razor,” Information Processing Letters, vol. 24, no. 6, pp. 377 – 380,
1987. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0020019087901141

[67] H. Liu and H. Motoda, Feature Extraction, Construction and Selection: A
Data Mining Perspective. USA: Kluwer Academic Publishers, 1998.

[68] “Datamart, a dataset search engine and data augmentation platform,”
https://docs.auctus.vida-nyu.org/, accessed: 2020-16-07.

[69] T. Faas, An Introduction to HTML5 Game Development with Phaser.Js,
1st ed. USA: A. K. Peters, Ltd., 2016.

http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-289
https://codelabs.developers.google.com/codelabs/tfjs-training-regression/index.html#0
https://codelabs.developers.google.com/codelabs/tfjs-training-regression/index.html#0
https://www.machinelearnjs.com/api/linear_model.sgdregressor.html
https://www.machinelearnjs.com/api/linear_model.sgdregressor.html
https://doi.org/10.1162/153244304322972694
http://www.sciencedirect.com/science/article/pii/0020019087901141
http://www.sciencedirect.com/science/article/pii/0020019087901141
https://docs.auctus.vida-nyu.org/

	Introduction
	Related Work
	Interactive modeling in VA
	AutoML and Hyperparameter Tuning
	Multi-model systems in VA

	System: UI and Technique
	Design Guidelines and Tasks
	User Interface
	Technique

	Usage Scenarios
	Death Rate Prediction
	Stock Price Prediction

	Discussion and Limitations
	Conclusion
	References

